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ABSTRIC r

Solutions to th( Dirichi-et and Neumann problems for the region

cx-.-rnor to the intersection of two iegions whose individual electro-

static Green's functions are knomn are developed. The method is

appl-ed specifically to obtain solutions for the extexmar of a solid

finite circular cone sith a spherical cap. The solutions to the vector

and scalar wave equations for long wavelength•s can be expressed in

terms of these Dirichlet and Neumann solLtions. This will be the

subject of a forthcoming report.

iv
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SCOPE GF REPORT AND SUMMARY OF RESULTS

Our ultimate purpose is to obtain solutions to the scalar vave equation

IV2 0 + k2p = 0

over the exterior of a compact set P in 3-space, subject to vanishing nor-

mal derivati~es on the boundary of 12, and in the presence of a source 0 -

i. e., essentialll the Green's solution. We intend to get explicit solutions,

moreover, in terms of classical functions, and indeed in terms of the

Green's functionq for regions simpler than 12 In this paper ye study only

the case k = 0 (potential problem), and we will subsequently use these rcslts

to obtain the so-called Rayleigh solutioas for k 1 0.

This program is accomplished under the frllowing two limitations:

(1) The region 12 is the intersection of two regions il, and 92-

for each of whinch the exterior electrostatic (reen's function is knowii.

(2) The region f2 is more'e'r -.,;ally symmetric as is the

function i.. and these axes of syinmeti3 coincide.

Using the present method it does not appear possible to lighten these

restrictions essentiall (it will be seen under (I) that %%e could have an arbi-

"•.•number of regions ins'ead of just to). These tno restrictions,
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%hlch correspond roughly to the two major parts of thib %%or;k, ire imposed

only as they are needed to "make the method uork", since a greater generahlty

at the intermediate steps adds nothing to the complexity of the tiedtinent and

is conceivabl. of independent interest.

In Part 1, in %%hieh we assume only the restrictions under (1), we

solve the general Dirichiet problem for a region Vt iihich is the inter-

section of t%%o regions fl, and f. 2 -- . ?- 0 r % - for which mdi-

vidually the electrostatic Green's functions G, and G2 are known. The

method is probabilistic in nature, using Browman motion theory. R is not

indispensable to use this theory to acheive our results, but it was the way

it %, as discovered and it has the advantage of being relatively simple, and

in addition gives simple bounds on the iterative method it leads to.

In Part II we assume conditions (1) and 02) and using the result of

Part I iie shosi ho" to solve the Neuiman problem (vanishing normal

derivatives on the boundary of Si) with a suitable singularity (the axially

integrated Green's solution). This gives, as a special casLe ot coarse,

the dipole source at infinity directed along the axis of symmetry analogous to

the "radiation condition" at infinity). The method employed is due essentially

to Bassett and is very old, but seems not to have been noticed by later wiriters.

-he present modification, in particular, seems ne%.

2
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In. Part IIJ some n" these resiiuts are CYphLcitiy carried througn

far a specific example -- e a solid fnite cone capped by a sphericai

segment, the center of the sphere coinciding with the apex of the cone

\We give calculations for the solution of the Dirichlet pioblem -a ith

constant boundary valces, and those boundary values which in turn yield

the solution the Neumann problem correspcndihg to a dipole source at

infinity These calculations are rather involved but can be, as appears

to be generally the case, expressed neatly in terms of explicit matr:x

calculatiozks The main numerical problrm indeed, is that of inverting

a certain matrix.

In Part IV we discuss several aspects of the method of Bassett;

namely its uniqueness and its Yelation to the "method of generalized

electrostatics" developed recently by Weinstein and Payne

3
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PROBABiLISTIC MET:ODS AND Thi 9ltt1IiiET PRO
1

3 LENI

1.1 Notation and Termin(log

The points ot 3-space El re denoted by vectors p, q, %., 3

'ihich will be co-ordinatized when necessary. We consider only scalar-

Nalucd funtionas f, g, U, V,... The voiu-ni differential at a is denoted

bA d v(p).

Wc consider certain regions f2, tZi, S12, . i.. n E3 which, if

bounded, %%ill be compact. T.e complement of 0 is denoted by 0 and

the boundary of R b% B (t). We denote by -) a derivative in the

direction of the outward drawn normal to B(Q) at the point p E B(V)

The restrictiens placed on Q here and in later developments will be clear

from the conlext. For p E B( )% e denote by d o (p) the surface area

differential.

B3 the clectrosatic Green's function associated with P we mean

the function G(x, '.), x, y c f wh,ch as a function of , is harmonic in 9

except at N . %%hich %anishes on B(n), and is such that G(x, 3) -

4 - x -4 .. If B(n) is considered as a (possibl. unbounded)

grounded conductor, G(x0 ý) is toe potential induced at % by a unit charge

at %..

4
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1.2 Probabilitn Considerations

We let \(t), 0 < t < io be the three dimensiona! Wiener-Einstein

stochastic process, i. e. x(t) = (xi (t), x2 (t), x3 (t6) where xi (t) are

three independent one-dimensional processes N% ith x(0) =ft Let a compact

.2 be given and a furction f(p), p E B(Q1), be defined over B (0. The

follnu in,r,h tahilistie faet is tbn cnrnerqtonP of the method Pmploved here.

Let xo fl, and let T z T(xo) be the time at which x(t) + xO

first intersects fC, if it ever does. If x(t) + xo never mterseetq f,

set T = io. Thus

T(x) = sup ft I C(r) o ef" o•tt.1>0 L,*

From the contmuit3 of x(t) we conclude x(T) + xo C B(f1) and we

define a rapdom variable I z Y(xo) bk

" f(.(T) + x') , T< o

L 0, T= o

Then it is true that U(x0 ) -E \(Y(x()) , where E is the expecta-

tion, is the solution to the exterior Dirichlet problem. That is, U(s) is

harnonie for x c f, assumes the value f(x) for - c BIMl), and U(x)

%anishes like -, for j -- o*

S!! !
- " ..•= • 2. 2. •-- -- ,•--- --- " •=- -5
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These facts ýre relativel3 well known. - cf,,ij, 2L 31 - and ma)

be deduced from the more elementar3 fact that if Gj (x, 3) is the electro-

static Green's function for 0, then 3GO (xo, p) ; a (p) is the (infini-anp
tesimal) probabilit% that A(t) ' xo first enters n' via the surface element

do (p) at p. We then obtam by integration

1(p) '' c " o, W p'E(Y (xo)) a j (P d o 1p),
BJ• • np

B M*)

which is the classical solution.

*the Dimrichlet Problem for Tao Intersecting Regions

Let 0q be the intersection of tuo regions S2 and n-;2 - = nj n 02

and suppose that the electrostatic Green's functions G, and G2 are known

for Q, and 02. Exploiting the probabilistic interpretation of the Dirichlet

problem of Seetin 1.2, -e shoo.. ho, to solve the Dirichiet problem for P.

The method uil!. lso 3 eld the electrostatic Green's function for fn(uhich %%e

need in Parts II and 111) b. the simple expedient of solving the Dirichlet

problem for those boundar3 values induced on B(fW) ky the potential

-. For convenience ne assume at least one of the tuo regions

f2j and c22 is bounoed, so that the same is true of s ý fl n a2 • The

methoe is applicable if .Z is the intersection of fn, . Q .. n %here

the individual Creen's functions are Imown, but the calculational cumpiplxit%

in, reases rapidl%.

6
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Le. B(f!i) =S: U S" anl B(.)C S, US,' ::here S1 , fl,' ,

S1' B(f.,)f n .. andsimilarll for S2 , S 2 '; S2 = B(o 2 ) n fA.

S B2112) flý 1. To make the problem non-trivial %se assume these four

components non-void.

In connection %wth this notation we refer to Figure 1 below in -Mhii

5?. is an infinrte cone and Q2 ir a sphere, an example treated in detail in

part Ill.

S12

S ,

0

N /

Figure 1

7I
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ofer- thc rt,,as of the sphere is 1-io•ld the semi vertex angle ot the
-1

cone is r - cos go.

Let f(p) be the desired boundary value defined over B(Q) = SI

and consider a point pc TU '5.. Let us denote by E1 (p), pc Sj the required

expectation, e•hich is the potential sought, Alhere the Wiener process starts

at a point pC Sý And tMmilarly E& (p), pC S1 for a starting position PC S, .

For the particle starting at pC S, it may intersect S1 before intersecting

Sq, or S1 before S, , or may never intersect either. If we denote by G, (p, q)

and G2 (p, q) the respective electrostatic Green's functions for ti andk the

sum of the expectations for these three cases is

El(p)-F,(p)+ G( E.Wx)d a(x), (2)
I 

~J anx

S,
Pc S' ,2

"%here
F (p)= a G,(,x f W) d a W, (3)

Oa n.

PC SI.

In an exactly similar way , e find the corresponding equations for a

point p Sc

8
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PC Si

%%here

F2 (P) .3G2 (p, x) I W d a W (5)
a1x

Equations (2) and (4) constitute a pair of iitegral equations for El

and E, %diich we propose to solve. We remark, that if we have do"-t so, ard

F, tind F2 are defined for an arbitrary point pC !Rno2( by (3) and (5)-, then

the right hand sides of either (2) or (4) gives the potential s'~ight, and they

must agree in this region. If, houever, as in Figure 1, the region n2~ is

bcunded and f3l is not then for pe gc nThý only (4), and not (2). gives the

co'rrect result. Similarly, for PC 5 i(-', S2, (2) only gives the correc, re-

suit. Indeed it is easily seen that the above znumeration of cases is valid

for both (2) and (4) only if pe c qf, I.

Let us define

an
q

11(p, q)- anGpq qcj '7)
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S(p)-F, 1p) + ll,(p, x)F,(Wlda) 
)

.Sl pcS N

K (Pq) ý f2 II ÷I ýp.,x H (x, q0Fz) d a (-0 (10)

Si p,qc s

K2(p.q)= f H2 (p.x) HI(x,q)ld crW()
S]p, qE•

% P, q C -

where F, and F, are defined in (3) and (5). Then (2) and (4) yield the following

Fredholm equations for E1 and E2 ,

EI (p,) (p) + XKItp,x) E, (x) da(x), (12)

J- pE s2

E, (p) =A-(p) + K2 (p, x) (.(ld a(x)

SI pE si~xd(c

These are tuo ordinai y Fredholm equations •vhich dete.-mincd E,
and E, uniquely and, as mentioned above, they completely determine the

bulution.

In
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1.4 1he Iterative Soiutions for E, and F,

In these integral equations the classical iteration procedure can be

carried out protitably (m contrast to the double-la3 er integral equation for

,uhich the iteration procedure diverges).

Considering Ei for example, ue let K1,W (p, q) be the nth iterate

of the kernel K1

K 1  (p, q) = K1 (p,o q)

K, (p, q)= K n (p, x) K1 (x, q) do Wx)

S,J

"Thcn •e have the classicaI Neumann expansion

Co 1

E,(p) = F1 (p) + > Kn) (p, x) Flx) do (x)

'n~
S2'

and this series converges ex4wienemiaiy last.

To verfij this last remark, we notice that KIn) (p, q) do (q) 'q

the probability that the Brownian motion particle has made n d.ubte

11
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transfers bet,%een S2' and SI', terminkting at an area element d a (q)

on -2' %% thout eve" having entered S, () S2 = B(R). If C,, say, is

bounded it is clear, at least intuitiveh, that the event of n such double

transfers, for large n, has a probabiht, 0(an) fgr somE 0 4 a -4 1.

More preciselk, put

r
a = sup j K(:., q) do (q)

S21

then a , I and it fnl!c.a , As c .b

r
(n),

Kz (', i ) da (y) ' an n = 1, 2,

S2'

and also if %e put

b max. IFi(x)I
xC S2'

ne shall have

E) (p) F,F(. + fq) F , (q) a ( j

1'

12
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where

00 ba- ban

1- a
j=n+l

givig s P'mple bound on the vriiui made by truncating the series at n

c "ILs.

It is easd_• seen that if we know G2 (p, q) for a region f?2 which

"differs" but little from 12, then a is very small, and as a matter of fact,

pursuing this remark it is possible to get ar cx.ct perturbation fox mula for

a region ',f the form S2 = 122 L T. where T. is a region whose capacit3

goes to zero wvith c.

In the practical calculations we have encountered thus far all the

iterates can be explicitly calculated in terms of matrix calculations, and

the resolvent kernel for these integral equations is expressible as the

inverse of an explicit matrix, cfPart IlI.

Sll l ll [g" ,i ii' 1 p lII tl~ ll,
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II

SCLUTION OF THE NEUMLTANN PROBLEM IN TERMS
OF THE DIRICHLET PROBLEM

2 1 Assumptions and Notations

From this point on we assume, as stated in the introduction, that

,2 = Q, • t. is axially svmmetrie, or is a body of rotat!'n The sets S2

and % need not be, however. We also adopt, from this point on, the

spherical co-c, dinate system (p, 0, e) to describe the vectors pq .....

in .Lhs notation p is the distaace from the origin p = I p I,, 0 is the co-

latituti 11 i ( < r, and 0 is the longitude 0 A 0& 2 7r. We adopt the

transformation p = cos 0, so that I ;ý u -I, and cotisider, when convenient,

the system (pI.0).

We choose the axis of symmetry of fl to be the polar axis 0 = 0. Given

a region Q we say that a function U (x), x t 5, is a solution of the Neumann

problem if U (x) is harmonic, x c 5. and 0/an U (x) = 0, xc B(fl). In

order to ,avoid yielding thL. trivial result U = const. th. condition of harmon-

icity in 5 must be relaxed and U must possess certain singulari:-ps either

3vi the finite part of F or 'at infinity". The precise nature of these is

discussed later

14
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2.2 Harmonic Functionw avid Stream Functions
9

We denote ov and E' the operators

2 a 2__)+ b 2 d * d + 1 2 ,2 p 0 '3p ( + _2 20 2 (14)

E~g = 2• + (1-u2) • 15
22.,

We apply E o2anly to axially symmetric functions, so the term mi 0 does not

appear. We say that a pair of functions, axially symmetric, are conjuga,

if they satisfy the Beltrami-Stokes equations. That is, 0 and h are conjugate

if and only Jf

_. _=Oh
l- 31 a-p (16)

2 3 - Oh (17)
ap Op

It follows easily that if 0 and h are conjugate, 0 must satisfy

2 2.,72 0 = 0 and h must satisfy E h = 0. Moreover, if 9 and h are conjugate

they are orthogonai - V 0 -7h = 0. The pair of equations (16, and (17)

correspond to the ordinary Cauchy-tiemann equations, and given any •
2

satisfying V I2 = 0 there corresponds, oy means of them, a function g

satisfying E2g = 0, and conversely; given g satisfying E2g = 0 there ex.zts

15
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a satsfying 17 1 0. The correspondznce is unique up to an addiuve

constant which may be determined by prescribing &-e value at one point, or

at infinity We give the e'.act reciprocity relatos later

The goal, w•thcii we described in the introd-ictionu of solving only

Dirichlet boundary value problems could be achieved if. given S2, we could

solve the problem E2h = 0, p C 73. h(a) = const, a c B(fQ), for then the minc-

tion 0 conjugate to h would be harmomc with the Neumann boundary conditions

It turns out to be possible to do this by solving an accessory Dirichlet problem

2.o The Aietnou ot Bassett

Baseett noti'ed that the following relation is true, for any function

u = u(p, P) with requisite derivatives,

cose E 2 
(Pr7;2 u (a, -)) = -52 V'(cOa u(p, 1A) . (18)

2 2

This correspondence between E2 and V2, whmch is easily proved by

substituting in (14) and (15), is the link by which we connect the D)irichlet

and Neumann problems. Bassett's results are credited to him by

Hobson m i4". A related procedure, due to Weinstein and Pa:.cc, Is

sketched bri,ýfflv in Part V.

From (18) it is clear that if we %ant to solve the problem E2g = 0 with

boundary values b(p). D c B(12) ne can do so by solhtng712 0 with
cos0

boundary values c(pi = b(p), and in fact the function g sl1 then be given by

16
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g . (19)
g= cos6

If %e now find a func:on 0 conjugate to g, 0 will be harmonic and its

equipotential %urfiies w-.11 be orthogonal to the level surfates of g

In particular, suppose v(x) is harmomnc in ?, except for prescribed

singularities. In order to solve the Neumann problem we consider the

function V coniuate to v and choose b(p) ="(p), p E B(.2). Then the

function V - g, with g as above has zero boundary values and its conjugate

function v - L is harmonic and has vanishing normal derivates on B(Q),

.and thus fair,,snes the solution with the prescribed singularities This

procedure is in fact the way the further developmc nt proceeds.

WL. remark that the rstriction to axially symmetric bodies and

boundary conditions is ndispensable for the use of (18), and witui this

frame,%ork cannot be extended

"2 4 Solution of Reciprocity Equations

We consider the eqaations (16) and (17), showing how to express Pin

terms of h and vice versa.

Suppose 0 iý, an axially symmetric harmonic function defined on r.

Then there exist measures b , and "2 over the non-negative reals such that

for sufficienti% small p

17
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0 (P.U) S pX p)() dvl (X20)

and fee p sufficiently large

0(p,i1) = j. P&) dv, Ot. (21)

These a- e the "normal solutions" and generally vI and V2 will be discretc

so that the above integrals will be sums - that is, v1, for example, will

assign a ueight an at the value X >- 0, n =0,1, ..

When 0 is expressed in this fashion its conjugate 0 h has a particularly

simple form We obtain, namely, by solving (16) and (17), that for p in the

range where (20) is valid

S= 
h(p,/p) p J1 -p 2 P ") P (.)dvi{i) (22)

ard for p in the range of (21)

"0 = h(pXL) = p -l p2 p 
( 1

) (#) dv 2 (X) (23)

S-pX X

These formulas determine h except for an additive constant. We omit

the derivation which is strail 'itforward.

Conversely, any axially symmetric stream function h car, bf written in

the form of (22) oi (23) w:i, suitable vi and V2, and the harmonic function

which is conjugate to it is given by (20), (21) with these same L 1, L2

18
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2.5 Solution of the Neumann Problem

Let G(p. 1j) be an axiadly symmetrie function harmonic in U except

for prescribed singularities. Using the preceding resLlts we are nos in

a position to solve the Neumann proelem for ii, that is finding a function

U(p, p) harmonic in 5 with vamshipg normal derivatives on Q1 and with

the same sngularities as G.

We wvrite

UJ(p) = G(p)-V(p) (24)

so that V(p) iq harmonic everywhere in T2, and we require it to vansh ".Or

p --- o, thus requiring U and G have the same limiting behavior.

Write G as

G P•pXPX(u)dv() op 4p 0 n (25)

on sappoa,.ng the smgularitcs of G arc exterior to the sphere P Po.

The function conjugate to G is then, by the preceding section.

- •

and %e write for a point p c B(W)

b(p) - i M vO)cs (26)

19



THE UNIVERSITY Ol' MICHIGAN
2871-5-T

Let V11iI cos6 be the soh.tion to the Dirichlet problem for N~ with

boundary values b(p) - it is simple to prove that the solution is of the form

VI(p wcoso. Then p - V:(p, m) is a stream function and V1 can thus

be wvritten in the form of (22) or (23)

(27)

V, (p, 'A) P S xU (p) dTr2 M

We now set 7 as the function conjugate to p •i-i2 Vt, so that wve

have fromn the reciprocity formulas tcf Scction 2.4

(28)

then shos the additive undetermined constant must be, in fact, zero.

Since G - p F Vt is v stream function vanishing on 13(12) its

conugate has ncrmal derivatives zero on B(17), as required.

To recapitulate, the rormal solution to the Neumann problem, giver.

0 andG, isG

U -G - P/-7t V,

20
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(the bar representing a z-onjugate) uihere V, cc*& ib the soluti~en

Dirichlet problem fur S1 wijth boundary values b given by (26), V' being

determined by (25). The function V =p J11--,2 V, if, given by 1231) ufiere

't, and T2 are determined by (27)

2 C The Green's Solution

W~e nov. specialize the sclution of Lhc preceding section to the ease

iviiere Cie singularity is that generated by "charged ring". Tlhis will gle

twe Green's solution, or fundamental solutxoi'.

T'hus in equation (24) we take for the ffunetion G

2z

G(Po go. P. d8 (29)

-nd this can be ex,)anded

co

G~o o~pm P ft.,) P W) , P-C PG~p4L p~i) ~ .n-i n'o n0
P0

OD

0 nl n o n

and th.s is the G-e-n's function for the operator %2defined by (14) -.ith

respec. to the cbfferential dpdiu. Tliat is

21
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2 1 G(po,mo;pp) 9 (pm) du dp = 0(p M ) (31)
i 0 J-,

for continuous functions 9

B3 (22) and (231 tne function conjugate to this G is

Sn

G(po,11o;p..) =p IT P(l)&J)P(.) (32)(n+l)pn+l ) no 0

P 4 Po

O aCp2 p0

1(p go; p1) = p Z pW0))P (3o n+1 n n o

P >po 0

The term n = 0 does not appear since P()() 0.S0
By (26ý we consider. tor (pg) 4 B(Sb) and for p Po when

(o,.0) c B( ), the boundary value

b (p.,g.i0) P (- (A P W ) coso (34)
nlp III n o

0

and aie let V1(p,/u)cos& be the solution to tnt ordinary Dirichlet problem

with these boundary -alues on B(Sl). The function Vi(pi) can then be

expressed by (27), in the normal form

22
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LIP )= an P 'n

0

(35)
Lo a n pxI)1.)

V(p, A) (

for small and large p respectively, the constants an depending or oo "

For the function conjugate to V1 we have by (28)

V(pWp) = T an(X+l) p p)n (;)

0
(36)

Vlp, JA) = an ~ ~ PX (#A)

0 n

and consequently the required solution to the Neumann problem is

U (Po, v o0; P,) = G(po, y po .p"1J) - V(p,/J) (37)

nhcre G is given by (32) and V by (36)

To recapitulate, given S1 we solve the Di ichlet problem with

boundarl values b(p, 1 A) given by (34) The solution en, be expre~ssd

as Vicose %%iicl' determines ihe ronstants an =a n(Po o) il (33). Thcsc

determine V(p.u) via (36), and then U is given by (371
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Ill

AN APPLICATION TO A SOLID FINITE CONE.

3. 1 The Problem Considered

Using spherical coordinates let R be the intersection of

52i: u S po

M_: p < ro

The relevant regions and surfaces are as in Fig. 1.

this part we are going to carry thi ough some of the cr-nrilationg

for 9? that we developed in pa, Ls I and IL The calculations, though elementary,

become somewhat involved, but fortunately the use of matrix notation permits

a significant compeession.

We solve here the Neumann problem for (9, corresponding to a

singularity at infinity of the form pjA, p-4 oD. This is done in reasonable

detail and the answer, given by (45), is expressed in terms of the quite sim-

ple matrix-%- given by (43).

For the Dirichlet problem for the exterior of 11, that -z the solution

",ith boundary values one on B(R),is similar, except that it is not necessary

to find the conjugate functions, and is given by (46).

3.2 The Nc-imann Problem

As mcntioned in the preceding section %e do not use the bingiularity

generated by (30), but only its limiting form %%hen po on and/i 0 1.
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This •ill be the analogue of the ' radiation condition" and is that induced

by .n indefinitely large charge on the remote axis of symmetry - i.e.

The ootentrip uet)ics i p-=e pa. . as .an be seen by considering

rm p2 (G - )
P- D 0 12p-0so oo o P

0

in equation (30,

By considerinl (32) this induces the boundarv values

21 p(l)

1.m p b(p,m,Q)=- -) p P p) cossO
02

0
1p coq

=. P I_;! 
0~

uthen re setp° -I irn (34) and take the limit. Thus in (26) we have just one

term and the boundary value for the associated Dirichlet problem is

b(p,pQ)= 2 oV I-- cos). (38)

3. 3 Solution ot the Associated Dirichlet Problem

Let a (m) be the pos.tive zeros of P(m) (,uo) considered as a function

ot, jl,2..., m m-0,1.... andput

•j(m) a • plm')lx3

ax=•

a 
(m) 

P

(m) as x A.,(M).
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Then the Greens f'.,ncLton for -Q1 is

~(mr p~(m) ()

wo OD a (1n) P (in) PP ) (in) (q

G,-(p, q) . (2 -'-2o .) ) p () + 1 (m) _ P__a q
o a (m)) (31

(39)

Cos m (0p - 6q'

if Pq ;_ pp if pq< pp we interchange p and q in (39).

For Q2 , the sphere, we have

O OD 2n+l n

1 - rp
G4p~) r (1 2n+l ) 2n+l

m=0 ,-n P
(40)

n(m)n ) P (m)n ( )cos m (p- 0q).
f~r p.< qn p•- .... .. . p. . q

f r pp pq . W e m aKe a si nilre ! . .. p,.. g q. i d - f .p :• P l.

For B (121) and B (Qq) we have

dal(p)=p /1-p
2 dp dO

an I FI pEB(-2,)

do 2 (p) = r d dpij
0
o a'

dn pO Ir
"0P•BO•
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In calculating H1, Hz.9,•. K1 1K2 of(6), (7), (8), (9), (10)

and (11) we need only retain the terms corresponding to n = I in (39) and

(10) beca.se of the boundary condition (38). cf. also the remark following

(2o).

VUe let a, a, )3 be respectively a1 (), o(1), 13(1), and in the

sequel we replace the cosines by complex exponentials, it being understood

that in the ensmng calculations we are to take real parts and subsequent to

any 0 mntegrations we are to supply a factor r, since an easy calculation

shous

""Re i0 - 0 , /e 10 -i0 q)

,) k )

0 ti - io q

Thiq notational device enables us to write HI and h2, as well as

the other relevant functions, as rather compact bilinear form%.

Thus retaining only the tetras a = I ir (39), (40) and defining the

follo,sing coblmn vectors, with p = (p,,u, 6),

a (11 (W) ei9)

V, 'P) ~( a1 -U2r (P) =( / Pa) 41) c

S\Paj + 1

27
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V2  
-1 e -10

\p•=l-P- d

vi. ha-,. for If,, defined by (6)

qi
1t, (p,q) - Ul (p) \'I (q), Pp <ýZPq

SU (p) V2(q), pp >pq

q c B(S21),

where the accent denotes the tran~lise and where, without specifically

indicating it real parts are to be taken.

Similarly defining

/ - f1) e

(P) 1 (1)=AIJ~t r -p (l) )e-O

%%e obtain from (40) and (7)

I1, (p,q) = Y' (p) Z (q)

qe BOWt11)

"The follou tno vectors A, 13 and three matrices M, N1, N_,, %%hose

components arc constaits, are needed. In the designation of a matrix as

CJk, the index i refers to the row index and k the column index. In denoting

.2a



THE UNIVERSITY OF MICHIGAN
2871-5- F

th
by a a column vector, d -fers to tlc coxmiponjet of it.

A: f V, W) b W) d al,'-

S,[1 2 , oa, + 2
a 0} 7 0 (41)

293 (a, + 2)

B z W x b Wx do,

(I -JAo 2 (2j" 11) 2u "
2ý 2r C(~ (

8 (j - (j + 2) 0P0 j 0) >

3
r3o 3 -2

a (3jgo 0 2) "j

AM J \'' (x) Y' (x) do1 (x

S,

k o

13.(a +k-i 1)r aj+k+l
0

1,2 .....
k = 0,1 ...

= Z(x) UW (U ) do. (aW

29
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(j a + I ro (l) (Uo} Ok
0 4 (a-,, -j)(ak+J+i)

j= 0 1 ....

k = 1,2. ....

N,2- 3 ZWx)U• (x) d 2 Wx)

( 2 2j+I
(ak-j) (ak+ + +1) rok -

j =0, 1 ......

k = 1, 9.

In tiesc integrations the function b (p) is given by (38) and a factor

has been supplied in lieu of the H integrations, as explained above.

In terms of these expressions it is simple to calculate the quantities

in (3) and (5), and (8) thru (11). They are, namely, the real parts of the

left hand sides of the following

F, (p) = LI (p) A , p 5 1 AC h

F2 (p)=Y'(p)B, pp rO

ý (p) - U,• (p) A + U1, (p) NI B, pE S

¢2(p) = Y' (p) (B + N2 A) pE S"p 0

30
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K, (pýq) = U11(p) M z (q), p, ql

K2(pq)=Y'(p) N1 V(q), p, qES

In terms of these expressions w,- can easily solve (12) and (13).

From (.3) %%e obtain for E2 , namely,

E2 (p) =Y' (p) B F Y' (p, N2A

(42)

+Y'(p) N, i V,(x) E2(x) delix),

S p
pE S1

Denote by X the vector

X -rVi (x) E2 (W) d a, (x).

Si

then multiply (42) by V, (p) and integrate over S , obtaining

X = MB ' 2 AN MNA X

giving

X 1 -MN) (M I B + M N2 A)

Substituting this in (42) %%e "ktain

f-

E, (P) y (p) BLB+NXA+Ni(I-MNNI)-1 Al(B+N, A

Y' (p) I+N 1 (I--MNi) Mj( B+ N2 A)

-Y,(3) (1-NMW-1 ( B -',,A

31
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Denoting th,• vector L,

"'N (X (( s B + N2 A )(43)

we have this

, pOl) (.U)
E2 (P) =z xj"--. ) Cos 0

'uhich, though initially defined only for g = Io ( p C S ) is now seen to be

valid everywhere in p >_ r (p c ?-h) by continuatic this being a consequence

of the remark follo'inng (5). This remark is also verified after we calculate

El.

To calculate El, we obtain from (12)

E, (p) = U" (p) A + U, (p) MB

+ 14(p) AT F ~ )E~~ox

sI

This a solved eAxctlyas for E, and we obtain

Ei (p,- U,'(p) A -U, (p) ATB

'U' :2 'p) AT (I - INJ ")-1 (N2 A + N, I M B),

PC Sý.

On using (4) we obtain for the petential W(p) , p c f2, the express;on

32
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W(p) Ypf(3B Y,(p) NA +N 1 ;
L

-NNM(IN 1 M) (- 2 A+N, MBIJ

=Y'(p) (I -1N-1(N,2A+B)

Y , (WLA_ (44)

in agreement with (43;

A s~milar argument with (2) yield-s

c
\i' (p) - F, 'p) + / III (p,x) E2 (x) du (,c)

S,

U, (p) -A U2, (p) v() Y' lx) do (x)

" .1 Ll (p ) ! %I, W Y ' (x ) d alx ) - I, M j -1 + z )
I- L1 -N - B NA

i,. > Pp
,p

Fir ien t componcnt of the %ector n brmckcts " ,,have

-•(I) 0-3o m (it i

e 0O k -'--! + ' k a÷--iak a +

SI'5  Li

i Dill I i Hi i ie i..
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(u) (1 ý r

S1 ,ta -k)

in vch we have set p - (p,IA, 0).

In the first term the summation on i can be performed and the

result is simply p(l)(1) () /11) ,1 . This follows directly .n exianding

p(1) 6A) as a Fouriet series in the complete orthogonal setiP (.u)over

the interval i >, ji >p i° , the sum of the series equaling this function except

perhaps at the end points of this interval.

Thus, defining the matrix Q by

p(1) p roaJ - kJj~l, 2...

O t. (a.- k) k0, 1....

%e obtain for p t R,

i•(p) U2 (p) A +Y' (p) I I- NM -ABt

U• (P) Q I 1 M -1 (B + N, A).

These two expressions for W, namely this lattei and (44) must agree

over their common domain of definition, i.e fl C') 2.

The potential sought is then

P(1) Jy
Wp)= X j )- Cos 9,) >'ro"

'there Ltc X are the components O/ given by (43).
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"The strean fur.or~on for the body f. of Fig. I is then, by (23),
o p(1)()2Y ,__-
0. 0j .+ 1

0

and thc solution to the Neum•ann problem for 52 is by (24) and (28)

N(p)=p -7 nX n. P (45)
nP

thTo recapituiate, let n be the nt component of the vectorj',

given by (•43), and A by (41). Then the solution to the Neumann problem for

It, h•inch behaves as pli for p--.r* , is given by (45).

%'¢e remarl. Pat in the matrix Q, ifgo is such that a - k for some

,Ptegers ; and k, that element in Q becomes indeterminate, and is to be

replaced by its limiting value When k-4 a., re .. rding k as a continuous

variable. This limiting value is readily seen to be unity.

Also, as explained ii section 1.4, the ,nverse in (43) can be

approiximated by

n

where the bound for Jn is known, as in section 1. 4.
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4 Solut,or. of the Conductor Potential Problem

SWe sol h e here the Dirichlet pi obiem for Q, in wh• ch the function

b (p= I instead of (38). and qeek the sclitiohs uich v6anish as P-1 for

p-) o. The calculations are formally nearly id2ntitcal to those in the

preceding section, except that because of tl,- simple connl,'t b(p)

the 0 intes-'ationa can be avoidde,

Defne

a th positive zero of P (u

j x• o

o aPx o

and the following vectors A, B, and matrices M, N1, N2

r "J
0
•.(a +1)

2

B ----- r 0l > 0

S o j(j+l)

•3(a + k + 1) r 'J
0

3t,
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• 2 2j+l ro0ak -J + lP Po) ak
N(i -M a[ Jo "o

oa 2 (ak •' (ak+i- )

2 2),j 1 P 'Jo) ak
=- 2 (ak-.)(ak+Jel)r 0ak"

These corrmspond to the previous designated qIwantities u•ith the

same l~tters, and we have for the solution of the Dirichlet problem

Dl(p)= /-- x n on (46)

utiereX I is t•e nth component of /\.given by

/.= (I - M)-
1 

(B + N2 A),

as belore.
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IV

THE METHOD OF BASSETT

4 1 Preliminary Remarks

The sueess of the present mcethod rests very ititimately on Bassett's

identity (18). This identity enabled us to revert the solution of the Neumann

problem to that of a Dirichlet problem There is this a certain interest in

attempting to extend and simplify it, if possible

In this part of the report we give a sketch of the method of Weinstein and

Payne which is related to Bassett's method, and show that Bassett's iden'ity

is essentially the only one Mf its kind

4 2 The Uniqueness of Bassett's Method

The crux of the method of Bassett consists in finding a universal houndary

function, given in (26), suchi that thec solation to tlie Dirichiet problem corres-

ponding to it could be, under a suitable transformation, rhanged to the Neumann

solution by considering the conjugate function to the transformed function For

":he method to hp ,,niveri,-ly applicable to every S2 the boundary function and

transformation employed must be independent of f2

From this last remark ,t is simple to deduce th., the buundary function

must be a harmonic function We only have to consider a sequence of boundarles

fin converging to f2 and employ Harnack's theorem Also the transformation
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mnust be l.near ii, the sens- that if D is the solution to tne Dirichlet p, ,iem

the transfo.-n of D mast be a 0 + h where a and b are certain point

funetions

Ifwelet aD+.-F weobtain D- z F+ 9 for some functions a and i3.

and Jf ue want F = const for a point on B(10) for every f. tlcn a = B is the

universal bounding function sought and A3 = const. and we may as well assume

S= 0 We now consider only axially symmetric l2 - if uniqueness can be

esiablished for this subset of all Pi it will follow over the Lu, ger class

The condition required now is that V 2BF = 0 implies E 2F = 0 and

conversely From the fact that the classes of harmonic fznctot • -.ud stream

functi-.• form hnear manifolds we have theii 7 2BF = CE 2F for every F. and

%e seek functions B and C such that this is an identity in F.

The calculation becomes simpler in cylindrical co-ordinates, and (14)

(15) become with co-ordnates (z. r, 0)

72 0' + ) 2 4- 1?I 0:•-+++--"

3z2 ar2 r Dr 2 au

2 a2 + a2 1 a
az z •ar2 r ar

so that

2 2 I 2

r "r r2 a62

if we are then to have the ;dentitý 7 BF = CE 2F, we obtain for F axially

s ..rietrwc

19
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2 2

CE 2F = CV2, _ 2C SF
r ar

If these expressions are to be ilentical in F thou

'72)=0

B C

which verifies the previous remark that the bounding function is harmonic

The cquation in F then becomes

"2B VF2•7F VB---
r 3r

which shous B cannot depend on z Since in that case V F s B = F- B
Sr Sr

%%e obtain that B must satisfy

SB _ B
or r

and B - where C is some function of 0 Finally if B is to he- harmunicr

%%e must have C"(6) -C'(0) = 0 and C =A Lm.& A sino

Thus vue obtain B=1 (A cosO + A' ain6) or expressed in spherical

co-ordinates

B - A cosB+ A' sinO

tor some constants A, A' The choice used in (19) .*.us A = 1, A' = 0

40
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4 , Tne Method ot weiantein-Payne

Using %4it the2y ferm the 'method of generalized electrostatics",

Weinstein and Pavner7I have de,,loped a procedure similar to the above to

qolve the stream function equation in terms of the solution of a DirichIet

problem Though their method is not rele; ant to the develop~nent presented

here it seems %orthihiIe to point out the similacity

Their method depends on the fact there exists an identity similar to

Bassett's ,n the case when the dimensionahty ol the problem is stepped up by

ta:o Using the cylindrical co-ordhnates again se letV2 and E 2 be the
ii n

Laplacian and stream opezators in n dimensions with axial symmetry Thus

for n > 2

77 2  a2 _+ a + n-2 D
n z2 )r2 r hr

2 a1 + . n-2 aE2 2

n a.2 ar2 r ar

The identity *wh:ch corresponds to 08) is then

~n+2(ni~ n-I1 2~

and the reciproicity relations (16), (17) are

Jz n-2 dr )r n-2 Ozr r

! /I I
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Choosing n = j it ,s thus seen that by solving the conductor potential

pz oblem (the electrastatic problem) in 5 dimensions we can find the stream

frincton in 3 dimensions and thus the Neumann problem in 3 dimensions This

method has the advantage that the Dirichlet problem considered is one with

contant boundary vaiues, but it has the serious disaoantage of requit.ng

5 dirmensional potentials In our work it has seemed preferable to use only

3 d.,iiensional potentials with non-constant boundary values
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